THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5000 Analysis I (Fall 2015)
 Quiz 1

Time allowed: 90 minutes
Total points: 25 points

1. Prove or disprove the following statements.
(a) If A and B are nonempty subsets of \mathbb{R} such that $a<b$ for all $a \in A$ and $b \in B$, then $\sup A<\inf B$.
(b) Suppose that $A_{n}, n \in \mathbb{N}$ is a sequence of nonempty subsets of \mathbb{R}.

If A_{n} is bounded below for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_{n}$ is bounded below.
(c) If A is a nonempty subset of \mathbb{R} such that A is bounded, then $\inf A \leq \sup A$.
2. Suppose that $\left\{x_{n}\right\}$ is a sequence of real numbers such that $0<x_{n}<1$ for all $n \in \mathbb{N}$.

Define $A=\bigcup_{n=1}^{\infty}\left(0, x_{n}\right)$.
(a) Show that A is bounded.
(b) Show that $\inf A=0$ and $\sup A=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.
(4 Points)
3. Let $S=\left\{\frac{m \sqrt{3}}{n}: m, n \in \mathbb{Z}\right\}$.

Show that S is a dense subset of \mathbb{R}, i.e. for all real numbers $x, y \in \mathbb{R}$ with $x<y$, there exists $s \in S$ such that $x<s<y$.
(6 Points)
4. (a) State without proof of the Nested Interval Property.
(b) Suppose $I_{n}, n \in \mathbb{N}$ is a nested sequence of closed bounded intervals and $I_{n_{r}}$ is a subsequence of I_{n}.
(i) Prove that $I_{n_{r}}$ is a nested sequence of closed bounded intervals.
(ii) Suppose that $\xi \in \mathbb{R}$ and $\xi \in I_{n_{r}}$ for all $r \in \mathbb{N}$. Show that $\xi \in I_{n}$ for all $n \in \mathbb{N}$.

