THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MMAT5000 Analysis I (Fall 2015) Quiz 1

Time allowed: 90 minutes Total points: 25 points

- 1. Prove or disprove the following statements.
 - (a) If A and B are nonempty subsets of $\mathbb R$ such that a < b for all $a \in A$ and $b \in B$, then $\sup A < \inf B$.
 - (b) Suppose that A_n , $n \in \mathbb{N}$ is a sequence of nonempty subsets of \mathbb{R} .

If A_n is bounded below for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is bounded below.

(c) If A is a nonempty subset of \mathbb{R} such that A is bounded, then $\inf A \leq \sup A$.

(9 Points)

2. Suppose that $\{x_n\}$ is a sequence of real numbers such that $0 < x_n < 1$ for all $n \in \mathbb{N}$.

Define
$$A = \bigcup_{n=1}^{\infty} (0, x_n)$$
.

- (a) Show that A is bounded.
- (b) Show that $\inf A = 0$ and $\sup A = \sup \{x_n : n \in \mathbb{N}\}.$

(4 Points)

3. Let $S = \{ \frac{m\sqrt{3}}{n} : m, n \in \mathbb{Z} \}.$

Show that S is a dense subset of \mathbb{R} , i.e. for all real numbers $x, y \in \mathbb{R}$ with x < y, there exists $s \in S$ such that x < s < y.

(6 Points)

- 4. (a) State without proof of the **Nested Interval Property**.
 - (b) Suppose I_n , $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals and I_{n_r} is a subsequence of I_n .
 - (i) Prove that I_{n_r} is a nested sequence of closed bounded intervals.
 - (ii) Suppose that $\xi \in \mathbb{R}$ and $\xi \in I_{n_r}$ for all $r \in \mathbb{N}$. Show that $\xi \in I_n$ for all $n \in \mathbb{N}$.

(6 Points)